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inference. Also, while implementing the Lauritzen-Spiegelhalter algorithm, 
we developed an efficient method for finding maximal cliques in a 
triangulated graph, a necessary step in the application of the algorithm. 
The Lauritzen-Spiegelhalter algorithm, in addition to the Pearl algorithm, 
which we implemented earlier, has been incorporated into KNET, a general 
knowledge engineering shell for constructing decision-theoretic medical 
expert systems [21. We have developed a set of over 100 randomly generated 
bench-mark belief networks for formal evaluation of the Pearl and Lauritzen- 
Spiegelhalter algorithms, and comparison with other exact and 
approximation algorithms. We have commenced formal evaluation of the 
Pearl and Lauritzen-Spiegelhalter inference algorithms; preliminary results 
have given us important insights into the network topologies in which each of 
the algorithms performs more efficiently [12]. We are in the process of 
developing and implementing a method that allows us to use both algorithms 
simultaneously in performing belief network inference. We anticipate that 
the resulting synthetic algorithm will perform more efficiently than either 
algorithm alone. 
We have designed a temporal probabilistic representation and inference 
method 1251. We have developed a prototype knowledge base and system that 
reasons about the causes of temporally-qualified symptoms in a patient. 
Reasoning about time can considerably increase the computational time 
complexity of probabilistic inference and our current techniques are likely to 
be inadequate. Thus, we currently are attempting to develop more efficient 
temporal inference methods. 

Snecial-Case AlPorithms 
During the past year we have explored belief-network precompilation as a 
special-case method [27]. Precompiling a belief network consists of 
performing probabilistic inference for cases that are likely to be encountered 
and then storing the results, indexed by the evidence of the case. When the 
system is given a patient case, it first quickly checks to see it is has been 
stored. If so, it returns the probability distribution over the potential diseases 
almost immediately. If not, it solves the case more slowly with a belief- 
network inference algorithm. Work to date has demonstrated the feasibility 
of the general precompilation concept and the feasibility of caching 
incomplete evidence sets (that is, sets of evidence for which some values are 
unknown), or evidence sets selected by their relative expected utilities 
instead of expected joint probabilities. A theoretical justification of this 
method’s success has been derived, and will be expanded. 
Research work in the QMR-DT (Quick Medical Reference, Decision-Theoretic) 
project has explored probabilistic inference on a large medical knowledge 
base. During the past year, we developed a probabilistic version of the QMR 
decision-support system for diagnosis in internal medicine. Knowledge of 
over 600 diseases and 4000 manifestations in the QMR knowledge base is 
incorporated into the probabilistic interpretation of the knowledge base used 
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by QMR-DT. In light of the size of the QMR-DT knowledge base, our 
approach to developing a pragmatic diagnostic system is first to make 
assumptions to reduce the inferential and representational complexity. We 
are now in the process of evaluating and incrementally modifying these 
assumptions, based on the performance of the system against QMR and 
patient cases with known diagnoses. 
We have developed an algorithm that can perform probabilistic inference in 
QMR-DT in O(n m- 2m’), where n is the number of diseases (n is 
approximately 600), m- is the number of negative findings, and m+ is the 
number of positive findings [ 191. This development is a significant 
improvement over the straightforward inference algorithm, which is 0(2*). 
In practice, the number of positive findings is far less than the number of 
diseases. The current algorithm, as implemented in Lightspeed Pascal on a 
Macintosh II, can score cases with 9 positive findings in less than one minute. 

Annroximation Algorithms 
As part of our work on the value of bounding, we have developed and explored 
the modulation of the completeness of probabilistic inference by decomposing 
a problem into a set of inference subproblems, and by ordering the solution of 
these problem components by their expected impact on the overall 
probabilistic inference task. Our method, called bounded cutset conditioning 
[281, is a graceful analogue to the method of conditioning for probabilistic 
entailment in belief networks as developed by Pearl. Preliminary analysis 
indicates that this method can increase inference speed by a factor of 2 or 3 in 
some belief networks. 
We also have developed a randomized approximation scheme for belief 
network inference [131. Given a set of evidential variables, the algorithm 
computes posterior probabilities, with high probability, to within a 
prespecified error. The method combines Monte Carlo techniques, area- 
estimation strategies, and convergence analysis for time-reversible Markov 
chains. 

I.B.3 Probability assessment 
KNET is a general-purpose environment for constructing probabilistic 
medical expert systems [2,17,241. Such networks serve as graphical 
representations for probabilistic models. KNET differs from other tools for 
expert-system construction in that it combines a direct-manipulation visual 
interface with a formal probabilistic scheme for the management of uncertain 
information and inference. The KNET architecture defines a complete 
separation between the hypermedia user interface on the one hand, and the 
representation and management of expert opinion on the other. KNET has 
been fully implemented and debugged, and currently runs on Macintosh II 
hardware. The system offers a choice of algorithms, some approximate and 
others exact, for probabilistic inference. We have used KNET to build 
consultation systems for lymph-node pathology [201, bone-marrow 
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transplantation therapy [23], clinical epidemiology [ 11, and alarm 
management in the intensive-care unit [12]. KNET imposes few restrictions 
on the interface design. Indeed, we have rapidly prototyped several direct- 
manipulation interfaces that use graphics, buttons, menus, text, and icons to 
organize the presentation of static and inferred knowledge. 
In the past year, research on similarity netuiorks [201 has advanced in three 
areas. First, the theory of similarity networks was formalized. In particular, 
necessary and sufficient conditions for consistency among local Bayesian 
belief networks in the similarity network were derived. In addition, it was 
proved that the ad hoc procedure for construction the global belief networks 
from the collection of local belief networks is sound in the sense that any 
assertion of conditional independence implied by the global belief network 
can be derived from the structure of the local belief networks 1261. Second, 
the similarity network representation was used to build a knowledge base for 
the entire domain of lymph node pathology [20]. We found that the use of 
similarity networks greatly simplified the assessment of dependencies among 
findings. Also, the time to assess probabilities was reduced by approximately 
a factor of ten [26]. Third, the knowledge base was evaluated using a 
decision-theoretic metric [6]. We found that the diagnostic accuracy of the 
new knowledge base was significantly better than the accuracy of the 
knowledge base constructed without the use of similarity networks. In 
addition, we found that the new knowledge base performed as well as the 
expert within the noise level of the experiment . 
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II. Collaboration 
During the past year we have continued to maintain contact with a number of 
researchers who are interested in the research goals described in Section I. 
These include Prof. Ross Shachter (Engineering-Economic Systems at 
Stanford), Prof. Harry Lewis (Division of Applied Sciences, Harvard 
University), Dr. Randolph Miller (Medical Informatics, University of 
Pittsburgh), Profs. Peter Szolovits and Ramesh Patil (Clinical Decision 
Making Group, M.I.T.), Prof. Max Hem-ion (Carnegie-Mellon University), Dr. 
David Spiegelhalter (Medical Research Council, England), and Dr. Stig 
Andersen (Aalborg University, Denmark). The SUMEX-AIM computer 
resource has greatly facilitated our maintaining communication with these 
researchers during the year. 
The majority of our group participated in the AI in Medicine Spring 
Symposium held last year. 

III. Research plans 

IIIA. Reasoning about inference tradeoffs 
So far, our work on the value of probabilistic inference has focused on the 
value of computation in the setting of probability bounding algorithms. 
Theoretical work in the coming year will explore the possibility of tractable 
value-of-information calculations and approximations for several families of 
probability distributions. Also, in the coming year, we will work to extend the 
bounded-conditioning approach to inference under uncertain resource 
constraints to handle multiple pieces of evidence. We will seek to make the 
algorithm more robust by combining the method with a stochastic simulation 
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approach for determining weights on alternative instances. We also plan to 
construct an inference simulation system for gathering information about the 
convergence of inference algorithms under different evidential settings. The 
goal of the off-line simulation is to collect parameters that can be used in 
real-time value of computation calculations for controlling inference. Finally, 
we plan to evaluate the decision-theoretic control of the construction of 
relatively small decision models from a large homogeneous belief network, in 
the internal medicine (QMR-DT knowledge base) setting. 

1II.B. Efficient probability inference algorithms 
We plan to continue the formal evaluations of the algorithms that we have 
implemented, and submit the results for publication. We intend to apply the 
results of these evaluations in our work on combining algorithms for 
inference in a given belief network, and on developing new algorithms. 
We will extend our current work on temporal belief-network representations 
and attempt to design more efficient methods for temporal probabilistic 
inference. 
Other work will include refining and designing algorithms for exact and 
approximate inference on the QMR-DT belief-network. In particular, research 
in this area will focus on testing the validity of assumptions in the QMR-DT 
knowledge base and relaxing the sensitive assumptions by augmenting the 
inference algorithms or the knowledge base. 

1II.C. Probability assessment and knowledge acquisition 
The QMR-DT knowledge base currently consists of a two-level belief network 
in which diseases are said to cause findings. We plan to augment the QMR- 
DT knowledge base to more realistically model the causal structure linking 
findings, diseases, and intermediate pathophysiological states. 
During the summer of 1989 we will complete our work on similarity 
networks, which are used to increase the efficiency of acquiring probabilities 
directly from experts. We will turn our efforts toward developing a system 
that uses a medical database and a set of initial constraints to automatically 
construct a belief network. 
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IVA.7. VentPlan Project 
VentPlan Project: Combining Quantitative and 

Qualitative Techniques for Data Interpretation and 
Therapy Plannin g in the Intensive Care Unit 

Lawrence Fagan, M.D., Ph.D. 
Department of Medicine 
Stanford University 
Adam Seiver, M.D. 
Department of Surgery 
Veterans Administration Hospital 
Palo Alto, California 
Lewis Sheiner, M.D. 
Department of Laboratory Medicine 
University of California, San Francisco 

I. SUMMARY OF RESEARCH PROGRAM 

k Project Rationale 
We are designing a data-interpretation and therapy-planning system for the 
intensive care unit (ICU). Fundamental research issues in temporal 
reasoning are associated with the ICU application area including 
assimilation of incoming data, representation of time-oriented intervals, and 
description of ongoing physiological processes [Fagan 841. In addition, in 
ICUs of the 1990’s, many more physiological measurements will need to be 
collected at frequent intervals, and increased access to the current medical 
record in coded format will be possible. The goal of our system is to gather 
multiple measurements as they become available in the ICU, determine the 
meaning of the measurements with reference to the particular clinical context 
and the patient’s individual response patterns, and to suggest alternative 
settings for the mechanical ventilator that supports the patient’s respiratory 
function following surgery. 
Our approach is to coalesce quantitative and qualitative models. Researchers 
have built elaborate mathematical models of the respiratory and cardiac 
systems, but it is impractical to base the entire reasoning process on complex 
equations. These models may take too long to process data or make 
assumptions about the clinical situation that are unwarranted. There exist 
many ways to represent the static relationships between different 
measurements and their related diagnoses, but those systems cannot easily 
represent complex temporal information. We wish to combine the qualitative 
techniques in order to build a system that utilizes the advantages of each 
type of model. 
Adapting our approach for planning treatments for cancer patients with 
unusual clinical courses [Langlotz 871, we will use strategic knowledge to 
create patient-specific specializations of standard treatment plans. These 
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plans will be used as general guidelines by the mathematical model to start a 
search for optimal treatment interventions. In a similar manner, a Bayesian 
net will be used to specify the initial ranges for parameters used by the 
mathematical model as it attempts to adapt to the the incoming data. The 
Bayesian net can also be used to provide a type of “smart alarms” where the 
interpretation of data is influenced by the specific diagnoses attributed to the 
patient. We will use decision analytic methods to evaluate and explain the 
various treatment options available at any point in time. The long-term goal 
of this project is to embed the decision-making components within the data 
management tasks of the ICU. 

B. Medical Relevance and Collaboration 
The problem of too much data being generated in the ICU is well recognized. 
Originally, monitors were designed to provide more objective assessments of 
the physiology of the patients in life-threatening situations. However, as 
more and more measurements became available, the ability of clinicians to 
assimilate the data began to drop. Expert systems can be designed to sort 
through the data, recognize untoward events in context and help with 
therapy selection. An early version of this was the VM system, which was 
based on extensions to the production rule framework. The current research 
has far broader goals, including real-time response using multiple methods 
for reasoning and the use of integrated mathematical models. This has led to 
a three way collaboration between the VA hospital which is installing a data 
management system for a new Surgical ICU (Seiver), the Medical Computer 
Science Group where investigations in qualitative-quantitative reasoning is 
taking place (Fagan), and the mathematical modeling group at U.C.S.F 
(Sheiner). In addition, we are continuing informal discussions with Barbara 
Hayes-Roth’s group (see description of Guardian project). 

C. Highlights of Research Progress 
We have built a prototype version of the system which is being tested on 
realistic data derived fi-om ICU measurements. The long range therapy 
planning components have not yet been created, but we have linked the 
mathematical models with the Bayesian network and the decision-theoretic 
component. The entire system is held together with a control algorithm that 
selects the order that modules show be invoked. 
The central design principle of the VentPlan project is to develop a method 
for combining qualitative and quantitative modeling techniques. 
Mathematical models require the relationships between variables to be 
expressed as equations. Describing how a particular disease state-such as 
new onset of pulmonary embolus-affects a variety of respiratory and cardiac 
parameters is difficult. We are usingprobabilistic causal networks (also 
known as Bayesian networks) to represent qualitative relationships of the 
form: if A is present and B is high, then C is low with some probability. A 
complex set of relationships of this type can be built up into a network. 
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The mathematical model is able to estimate model parameters using patient 
data in order to generate patient-specific predictions of model variables-for 
example, partial pressure of CO2 in arterial blood (paCO2). The patient- 
specific mathematical model can be used to predict future measurements, 
which is difficult to do using the network formalism. Two other components 
complete the system. The ftist component is the control algorithm, which 
examines the incoming data and determines which of the modules should 
process the information. The utility model is used to encode physicians’ 
preferences for treatment goals-for example, representing the tradeoff 
between providing a sufficiently high level of oxygen to the tissues and 
causing toxicity from having too high a level of inspired oxygen. VentPlan 
uses the utility model in the therapy planning process to rank plans that are 
created by the mathematical model. 
VentPlan Control Algorithm. The control algorithm is activated each time 
that new data become available. Each iteration begins with the acquisition of 
new data, such as a blood-pressure reading. If the data do not directly 
correspond to quantities in the physiologic model, the belief network is 
evaluated. The network takes these quantitative inputs and the qualitative 
information-for example, the diagnosis-and derives prior-probability 
distributions for the shared model parameters. The mathematical model 
updates the parameters by combining the probability distributions with 
quantitative observations-for example, measurements of oxygen 
concentration in the blood. The mathematical model is then used to search 
for an optimal plan. The program simulates therapy plans under 
consideration by running the model, then ranks them using the plan 
evaluator. The therapy plans are sequentially modified to find the best plan. 
The calculated optimal plan is the recommended plan, which is compared to 
the current plan; this comparison is presented to the user. 
VentPlan continuously monitors the stream of data measurements, 
reapplying this control sequence to refine the model and to recalculate the 
optimal plan as new information becomes available. New data are compared 
with the expected values derived from the mathematical model or the belief 
network; in this way, the program accomplishes expectation-driven analysis 
of the incoming data. 
Belief Nets. Medical knowledge is represented in a belief network as a 
directed, acyclic graph in which nodes represent domain variables and arcs 
show important dependencies among these variables . Probabilities are 
attached to nodes and to groups of arcs. Prior probabilities are considered as 
static facts in this knowledge base. The conditional probabilities for a node 
are equivalent to rules of the form: “IF (parent node values) THEN (node 
values), with a stated probability.” 
Typical inputs are “mild congestive heart failure,” “normal respiratory 
volume,” and “decreased temperature.” The belief network module provides 
probability distributions for the parameters that it shares with the 
mathematical model based on the information computed by the network. The 
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corresponding outputs are estimates (mean and standard deviation) for each 
of the parameters, for example, cardiac output 4.4 +/- 2.3 l/mm, and oxygen 
consumption 180 +/- 120 ml/mm. 
Diagnosis nodes are at the top of the network. These nodes have no 
predecessors, and we assume they are mutually independent a priori. All 
diagnosis nodes are associated with a set of mutually exclusive and 
exhaustive values representing the presence, absence, or severity of a 
particular disease. Measurement nodes represent any available quantitative 
information. All continuous variables are represented categorically, with sets 
of discrete intervals dividing the value range. Depending on the necessary 
level of detail, three to six categories are used for each node. Parameter 
nodes are inferred entities that cannot be measured directly. Each parameter 
node corresponds to one of the parameters shared with the mathematical 
model and with the plan evaluator. 
The probabilities in a belief network can represent objective as well as 
subjective knowledge. The network for the VentPlan architecture contains 
statistical data on prior probabilities, objective conditional probabilities 
computed from physiologic equations, and subjective assessments. It is 
necessary to obtain conditional probabilities for the states of a node given all 
different states of the parent nodes. A probability editor lets the user browse 
through this multidimensional probability matrix. An equation editor 
generates conditional probabilities for any deterministic relationship. 
The current VentPlan network consists of 81 nodes. Eight nodes represent 
diagnoses corresponding to typical problems in ventilator care (for example, 
airway obstruction, infection, and heart failure); 18 nodes represent input 
measurements. Information for both types of nodes is placed in associated 
report nodes. These report nodes are influenced by error nodes, which 
implement error functions . These error nodes allow representation and 
detection of conflicting evidence. For example, some evidence might suggest 
that the patient has a high oxygen concentration, whereas other evidence 
might suggest that the oxygen concentration is low. Both pieces of 
information can be incorporated; their error functions will regulate the effect 
on the rest of the network. If the information on the low oxygenation is from 
a highly erratic sensor, it will be discounted, while information from a more 
reliable blood-gas analysis will have a greater influence. 
The inference engine is based on the Lauritzen-Spiegelhalter algorithm for 
local probability computations on graphical structures . It finds a set of 
probability distributions consistent with the available evidence and with the 
conditional probabilities in the network. The algorithm rearranges a network 
into a tree structure suitable for fast updates. Details on the algorithm can 
be found in Appendix F. We assume that the discrete probability 
distributions are approximated by the normal distribution. This assumption 
enables the network module to calculate initial parameter estimates as 
means and variances of the equivalent normal distribution. 
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Mathematical Model. The mathematical model of the VentPlan prototype 
consists of a quantitative model and a variety of numerical routines . The 
model is written as a set of linked differential equations that represent the 
mechanisms of oxygen transport through the body. Variables in the model 
equations capture the time-varying concentrations of oxygen as that gas flows 
through the circulatory system. The model has a number of highly nonlinear 
aspects, so it requires solution by iterative numerical techniques. The model 
makes a number of assumptions in order to maintain simplicity, as discussed 
in the section on levels of model detail. 
Parameters are used in the mathematical model to represent the relevant 
underlying mechanisms of the patient, Patient parameters often are not 
directly observable, or are costly to measure. Once their values are known, 
the underlying patient state is largely characterized. For example, we use 
the parameter cardiac output to represent the volume of blood pumped by the 
heart per unit time. This parameter is difficult to measure directly, but the 
modeling procedures can infer its value from other observations. 
Inputs to the model consist of initial parameter values, various patient 
measurements, the ventilator settings (treatment plan), and the times at 
which the observations were obtained. Solution of the model equations 
(simulation of the model) gives a prediction about the patient state resulting 
from these inputs. The model simulation is also used in the tasks of 
parameter updating and plan optimization. Time is included directly in the 
system equations (the derivatives are taken with respect to time). Patient 
observations are time-stamped to allow reasoning about different patient 
contexts and retrograde fitting of model parameters. Predictions may be 
generated for any desired future time. If predictions are requested for times 
in the distant future (with respect to the time constants of the model), the 
equilibrium form of the differential equations is solved. 
Prior-probability distributions for the shared VentPlan parameters are 
provided by the belief network. When direct observations of the system are 
scarce, these values form a basis for model predictions. As more 
measurements become available, the prior-probability distributions become 
less important. This process of updating system parameters is known as 
parameter estimation. Parameter estimation converts the general 
mathematical model to a patient-specific model, the latter being able to 
generate patient-specific predictions . The optimization procedure uses the 
patient-specific model to find the best plan, given a specific patient state. It 
accomplishes this task by minimizing an objective (search) function defined 
by the plan evaluator, which proceeds by numerical iteration. The 
optimization routines are able to optimize the ventilator settings individually 
or as a group. 
Plan Evaluator. The plan evaluator provides a relative ranking of plans 
and their predicted consequences. This ranking is complicated by conflicting 
objectives, which are typical of medical decisions. In ventilator management, 
for example, increasing the percentage of oxygen in the breathing mixture 
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can improve the patient’s oxygenation status, but high concentrations of 
oxygen have toxic effects. The optimal oxygen concentration represents a 
tradeoff between an improvement in oxygenation and an increase in oxygen 
toxicity. A multi-attribute value function is used to determine the optimal 
combination of objectives . The attributes of the value model are the 
proposed therapy plan (ventilator settings) and selected model predictions. A 
cost for each of the attributes is determined using a value function. These 
costs are weighted and summed to obtain the overall cost for a plan. 

D. Relevant Publications 
1) Fagan, L., Kunz, J., Feigenbaum, E, and Osborn, J. Adapting a rule- 

based system for a monitoring task, in Rule Based Expert Systems: The 
Mycin Experiments of the Stanford Heuristic Programming Project, B. 
Buchanan and E. Shortliffe (eds.). Reading, MA: Addison-Wesley 
Publishing Co., 1984. 

2) Langlotz, C., Fagan, L., Tu, S., Sikic, B., and Shortliffe, E. A therapy 
planning architecture that combines decision theory and artificial 
intelligence techniques. Computers and Biomedical Research 20:279-303, 
1987. + 

3) Rutledge. G., Thomsen, G., Beinlich, I., Far-r, B. Kahn, M., Sheiner, L., 
and Fagan, L. VentPlan: An architecture for combining qualitative and 
quantitative computation. Report KSL-89-04, January 1989. 

II. INTERACTIONS WITH THE SUMEX-AIM RJZSOURCE 

A. Medical Collaborations and Program Dissemination via SUMEX 
As described above, this project is a three-way collaboration between the 
Departments of Medicine, and Department of surgery at the VA Hospital, 
and U.C.S.F. As, such we will need electronic mail and networking facilities. 
In addition, we imagine strong interactions with other projects around the 
world with similar research goals. We have already been contacted by 
research groups in Holland, Scotland, and Norway. In addition, similar 
research projects are underway at Yale, Berkeley, and Chicago. We expect 
that the networking facilities may allow us to share test cases, and possibly 
knowledge bases. 

B. Sharing and Interaction with Other SUMEX-AIM Projects 
The Yale project mentioned above is associated with Perry Miller’s group. We 
also expect considerable interaction with the ONCOCIN and other parts of 
the Heuristic Programming Project at Stanford. 

C. Critique of Resource Management 
The SUMEX staff have been quite helpful in the support of the various 
machines that have been used in this project so far. We believe that the 
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current efforts of the SUMEX staff are quite appropriate for our research 
needs. 

III. RESEARCH PLANS 
Our basic research agenda is described above. The basic research issues 
underlying this project will extend for several years, leading to an 
implementation in the Veterans Administration Hospital in Palo Alto. This 
research will continue to need help assistance with local area networking, file 
service, and inter-network mail. We will need support for communications 
support within a project that is spread out over three geographical sites. 
The SUMEX stafY has been quite useful in providing support in other 
con.t?gurations of mainframe and workstations networked together. We 
anticipate that support for our unique collaborative arrangement will be 
equally superb. 
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W.B. National AIM Projects 
The following group of projects is formally approved for access to the AIM 
aliquot of the SUMEX-AIM resource. Their access is based on review by the 
AIM Advisory Group and approval by the AIM Executive Committee. 
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IV.B.l. INTERNIST-I/QMR Project 
J. D. Myers, M.D. 
University Professor Emeritus (Medicine) 
Randolph A. Miller, M.D. 
Associate Professor of Medicine 
Chief, Section of Medical Informatics 
University of Pittsburgh 
1291 Scaife Hall 
Pittsburgh, Pa., 15261 

I. SUMMARY OF RESEARCH PROGRAM 

k Project rationale 
The principal objective of this project is the development of a high-level 
computer diagnostic program in the broad field of internal medicine as an aid 
in the solution of complex and complicated diagnostic problems. To be 
effective, the program must be capable of multiple diagnoses (related or 
independent) in a given patient. 
A major achievement of this research undertaking has been the design of a 
program called INTERNIST-I, along with an extensive medical knowledge 
base. This program has been used over the past decade to analyze many 
hundreds of difXcu.lt diagnostic problems in the field of internal medicine. 
These problem cases have included cases published in medical journals 
(particularly Case Records of the Massachusetts General Hospital, in the 
New England Journal of Medicine), CPCs, and unusual problems of patients 
in our Medical Center. In most instances, but by no means all, INTERNIST-I 
has performed at the level of the skilled internist, hut the experience has 
highlighted several areas for improvement. 

B. Medical Relevance and Collaboration 
The program inherently has direct and substantial medical relevance. 
The development of the QUICK MEDICAL REFERENCE (QMR) under the 
leadership of Dr. Randolph A. Miller has allowed us to distribute the 
INTERNIST-I knowledge base in a modified format to over twenty other 
academic medical institutions. The knowledge base can thereby be used as 
an “electronic textbook” in medical education at all levels -- by medical 
students, residents and fellows, and faculty and staff physicians. This 
distribution is continuing to expand. 
The INTERNIST-I program has been used in recent years to develop patient 
management problems for the American College of Physician’s Medical 
Knowledge Self-assessment Program. 
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C. Highlights of Research Progress 

C.l Accomplishments this past year 
For the record, it should be noted that grant support for the QMR project has 
come solely from the CAMDAT Foundation of Farmington, Conn., from the 
Department of Medicine of the University of Pittsburgh, and from Dr. Miller’s 
NLM RCDA grant, NLM ROl grant and NLM UMLS contract. 
In 1987, the University of Pittsburgh was named recipient of a National 
Library of Medicine Medical Informatics Training Grant Award. 
The group of us (Myers, Miller and Masarie) together with assigned residents 
in internal medicine and fellows in medical informatics are continuing to 
expand the knowledge base and to incorporate the diagnostic consultative 
program into QMR. The computer program for the interrogative part of the 
diagnostic program is the main remaining task. An editor for the QMR 
knowledge base, as modified from the INTERNIST-I knowledge base, has 
been written from scratch in Turbo Pascal by Dr. Masarie. The entire QMR 
program can be accommodated in, maintained (particularly edited) and 
operated on individual IBM PC-AT computers. 
Our group has incorporated into the QMR diagnostic consultant program 
modifications and embellishments of the INTERNIST-I knowledge base, and 
will continue to do so over the next year by adding “facets” of diseases or 
syndromes. This addition and modification is expected to improve the 
performance of the diagnostic consultant program. 
The medical knowledge base has continued to grow both in the incorporation 
of new diseases and the modification of diseases already profiled so as to 
include recent advances in medical knowledge. Several dozen new diseases 
have been profiled during the past year. The current number of diseases in 
the QMR knowledge base is 597, and 4260 possible patient findings are 
included. 

C.2 Research in progress 
There are four major components to the continuation of this research project: 
1) The enlargement, continued updating, refinement and testing of the 

extensive medical knowledge base required for the operation of 
INTERNIST-I and the QMR modification. 

2) Institution of field trials of QMR on the clinical services in internal 
medicine at the Health Center of the University of Pittsburgh. This has 
been accomplished in a limited fashion, which began in 1987; a 
“computer-based diagnostic consultation service” has been made available 
to attending physicians and house staff on the medical services of our two 
main teaching hospitals. Institutional Review Board (IRB) approval was 
granted to the service before it was initiated. 
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3) Expansion of the clinical field trials to other university health centers 
which have expressed interest in working with the system. 

4) Adaptation of the diagnostic program and data base of INTERNIST-I and 
the QMR modification to subserve educational purposes and the 
evaluation of clinical performance and competence. 

Current activity is devoted mainly to the first two of these, namely, the 
continued development of the medical knowledge base, and the 
implementation of the improved diagnostic consulting program, and 
preliminary evaluation of the diagnostic consultation service. 

D. 
1) 

2) 

3) 

4) 

5) 

6) 

7) 

List of relevant publications 
Bankowitz RA, McNeil MA, Challinor SM, Parker RC, Kapoor WN, Miller 
RA. A Computer-Assisted Medical Diagnostic Consultation Service: 
Implementation and Prospective Evaluation of a Prototype. Annals of Int 
Med. 1989, llO( 10):824-832. 
Bankowitz RA, McNeil MA, Challinor SM. Effect of a Computer-Assisted 
General Medicine Diagnostic Consultation Service on Housestaff 
Diagnostic Strategy. Proceedings of International Symposium on Medical 
Informatics and Education, Victoria, B.C., May 15-19,1989, pp. 219-223. 
Giuse NB, Giuse DA, Miller RA. Learning by Doing: A Case Study in 
Medical Informatics. Proceedings of the Sixth National Symposium on 
Computers in Medical Education. Omaha, Nebraska. March 28,1989. 
Giuse NB, Giuse, DA, Miller RA. Computer assisted multi-center 
creation of medical knowledge bases. Proceedings of the 12th Annual 
Symposium on Computer Applications in Medical Care. IEEE Press. pp. 
583-90, November 1988. 
Giuse NB, Giuse DA, Miller RA. Medical knowledge base construction as 
a means of introducing medical students to medical informatics. 
Proceedings of the International Symposium on Medical Inf’ormatics in 
Education. Victoria, B.C., May 15-19, 1989, pp. 228-232. 
Miller RA, et al. Preparing a Research Grant Proposal in Medical 
Informatics. Comp Biomed Res. 22( 1):92-101, 1989. 
Miller RA. Legal Issues Related to the Use of Medical Decision Support 
Systems. International J Clin Monitoring and Computing. 1989. (in 
press). 
Berner ES, Brooks CM, Miller RA, Masarie FE Jr, Jackson JR. 
Evaluation Issues in the Development of Medical Decision Support 
Software. Evaluation and the Health Professions. Forthcoming 1990. 
Lincoln M, Turner C, Hesse B, Miller RA. A Comparison of Clustered 
Knowledge Structures in Iliad and in Quick Medical Reference. 
Proceedings of 12th Annual Symposium on Computer Applications in 
Medical Care. IEEE Press, pp. 131-135, November 1988. 

193 E. H. Shortliffe 



AIM Projects: INTERNIST-UQMR 5 P41 RROO785-16 

10) Miller RA, Masarie FE Jr. Use of the Quick Medical Reference (QMR) (R) 
Program as a Tool for Medical Education. Proceedings of the 
International Symposium on Medical Informatics and Education. 
Victoria, B.C. May 15-19,1989, pp. 247-252. 

11) Parker RC, Miller RA. Creation of a Knowledge Base Adequate for 
Simulating Patient Cases: Adding Deep Knowledge to the INTERNIST- 
VQMR Knowledge Base. Proceedings the International Symposium on 
Medical Informatics and Education. Victoria, B.C. May 15-19,1989, pp. 
281-286. 

12) McNeil M, Parker R, Bankowitz R, Challinor S. Correlates of internal 
medicine as a residency choice among students at the University of 
Pittsburgh. Society of General Internal Medicine Annual Meeting, 1989. 
(abstract) 

13) Parker, S, Kroboth F, Parker R, Hanusa B, Kapoor W. Development of 
an easily completed and scored physician satisfaction questionnaire for 
use by both inpatients and outpatients. Society of General Internal 
Medicine Annual Meeting, 1989. (abstract) 

E. Funding support 
1) Diagnostic-Internist: A Computerized Medical Consultant 

Randolph A. Miller, M.D. 
Associate Professor of Medicine 
Chief, Section of Medical Informatics 
University of Pittsburgh Department of Medicine 
National Library of Medicine - Development Award Research Career 
National Institutes of Health 
5 K04 LMOO084 
09/30/85 - 09/29/86 - $55,296 
09/30/86 - 09/29/87 - $55,296 
09/30/87 - 09/29/88 - $54,648 
09/30/88 - 09/29/89 - $54,864 
Support recommended for 1 additional year ending 09/29/90. The 
Amount to be determined annually. 

2) Developing INTERNIST-I Knowledge Base into a Resource 
Randolph A. Miller, M.D. 
Associate Professor of Medicine 
Chief, Section of Medical Informatics 
University of Pittsburgh Department of Medicine 
National Library of Medicine 
National Institutes of Health 
1 ROl LM04622 
09/30/87 through 09/29/90 
09/30/87 - 09/29/88 - $71,892 
09/30/88 - 09/29/89 - $99,639 
09/30/89 - 09/29/90 - $112,580 
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3) 

4) 

5) 

6) 

Pittsburgh Medical Information Sciences Training Program 
Randolph A. Miller, M.D. 
Associate Professor of Medicine 
Chief, Section of Medical Informatics 
University of Pittsburgh Department of Medicine 
National Library of Medicine 
National Institute of Health 
5 T15 LMO7059 
07/01/87 through 06/30/92 
07/01/87 - 06/30/88 - $153,454 
07/01/88 - 06/30/89 - $221,511 
07/01/89 - 06/30/90 - $265,930 
07/01/90 - 06/30/91- $278,092 
07/01/91 - 06/30/92 - $276,596 
Unified Medical Language System Support (UMLS) 
Randolph A. Miller, M.D. 
Associate Professor of Medicine 
Chief, Section of Medical Informatics 
University of Pittsburgh Department of Medicine 
National Library of Medicine 
NO l-I-M-8-3514 
06/30/88 through 06/29/g 1 
06/30/88 - 06/29/89 - $133,617 
06/30/89 - 06/29/90 - $129,573 
06/30/90 - 06/29/91- $188,824 
Research Proposal for Implementation of Chinese Version 
of QMR 
Nunzia B. Giuse, M.D. 
Research Associate 
University of Pittsburgh Department of Medicine 
Section of Medical Informatics 
CAMDAT Foundation 
06/O l/88 - 12/3 l/89 
$16,500 
Camdat Support of Quick Medical Reference (QMR) 
Nunzia B. Giuse, M.D. 
Research Associate 
University of Pittsburgh Department of Medicine 
Section of Medical Informatics 
CAMDAT Foundation 
08/O l/88 - 12/3 l/89 
$21,300 
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II. INTERACTIONS WITH THE SUMEX-AIM RESOURCE 

t/B. Medical Collaborations and Program Dissemination Via SUMEX 
INTERNIST-I and QMR remain in a stage of research and particularly 
development. As noted above, we are continuing to develop better computer 
programs to operate the diagnostic system, and the knowledge base cannot be 
used very effectively for collaborative purposes until it has reached a critical 
stage of completion. These factors have stifled collaboration via SUMEX up 
to this point and will continue to do so for the next year or two. In the 
meanwhile, through the SUMEX community there continues to be an 
exchange of information and states of progress. Such interactions 
particularly take place at the annual AIM Workshop. 

C. Critique of Resource Management 
SUMEX has been an excellent resource for the development of INTERNIST-I. 
Our large program is handled efficiently, effectively and accurately. The staff 
at SUMEX have been uniformly supportive, cooperative, and innovative in 
connection with our project’s needs. 

III. RZSEARCH PLANS 

A. Project Gods and Plans 
Continued effort to complete the medical knowledge base in internal medicine 
will be pursued including the incorporation of newly described diseases and 
new or altered medical information on “old” diseases. The latter two 
activities have proven to be more formidable than originally conceived. 

B. Justification and Requirements for Continued SUMEX Use 
Our use of SUMEX has declined with the adaptation of our programs to the 
IBM PC-AT. Nevertheless, the excellent facilities of SUMEX are expected to 
be used for certain developmental work. It is intended for the present to keep 
INTERNIST-l at SUMEX for comparative use as QMR is developed here. We 
will not need the DEC 2060 beyond its anticipated phase-out in early 1989, 
but will require access to its replacement for mailing purposes and to 
maintain contact with the national medical infortnatics community. 

C. Needs and Plans for Other Computing Resources Beyond SUMEX- 

Our predictable needs in this area will be met by our recently acquired 
personal work stations. 
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IV.B.2. MENTOR Project 
MENTOR Project - Medical Evaluation of Therapeutic Orders 

Stuart M. Speedie, Ph.D. 
School of Pharmacy 
University of Maryland 
Terrence F. Blaschke, M.D. 
Department of Medicine 
Division of Clinical Pharmacology 
Stanford University 

I. SUMMARY OF RESEARCH PROGRAM 

A. Project Rationale 
The goal of the MENTOR (Medical EvaluatioN of Therapeutic ORders) 
project is to design and develop an expert system for monitoring drug therapy 
for hospitalized patients that will provide appropriate advice to physicians 
concerning the existence and management of adverse drug reactions. The 
computer as a record-keeping device is becoming increasingly common in 
hospital-based health care, but much of its potential remains unrealized. 
Furthermore, this information is provided to the physikian in the form of raw 
data which is often difficult to interpret. The wealth of raw data may 
effectively hide important information about the patient from the physician. 
This is particularly true with respect to adverse reactions to drugs which can 
only be detected by simultaneous examinations of several different types of 
data including drug data, laboratory tests and clinical signs. 
In order to detect and appropriately manage adverse drug reactions, 
sophisticated medical knowledge and problem solving is required. Expert 
systems offer the possibility of embedding this expertise in a computer 
system. Such a system could automatically gather the appropriate 
information from existing record-keeping systems and continually monitor for 
the occurrence of adverse drug reactions. Based on a knowledge base of 
relevant data, it could analyze incoming data and inform physicians when 
adverse reactions are likely to occur or when they have occurred. The 
MENTOR project is an attempt to explore the problems associated with the 
development and implementation of such a system and to implement a 
prototype of a drug monitoring system in a hospital setting. 

B. Medical Relevance and Collaboration 
A number of independent studies have confirmed that the incidence of 
adverse reactions to drugs in hospitalized patients is significant and that 
they are for the most part preventable. Moreover, such statistics do not 
include instances of suboptimal drug therapy which may result in increased 
costs, extended length-of-stay, or ineffective therapy. Data in these areas are 
sparse, though medical care evaluations carried out as part of hospital 
quality assurance programs suggest that suboptimal therapy is common. 
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Other computer systems have been developed to influence physician decision 
making by monitoring patient data and providing feedback. However, most 
of these systems suffer from a significant structural shortcoming. This 
shortcoming involves the evaluation rules that are used to generate feedback. 
In all cases, these criteria consist of discrete, independent rules, yet medical 
decision making is a complex process in which many factors are interrelated. 
Thus, attempting to represent medical decision-making as a discrete set of 
independent rules, no matter how complex, is a task that can, at best, result 
in a first-order approximation of the process. This places an inherent 
limitation on the quality of feedback that can be provided. As a consequence 
it is extremely difficult to develop feedback that explicitly takes into account 
all information available on the patient. One might speculate that the lack of 
widespread acceptance of such systems may be due to the fact that their 
recommendations are often rejected by physicians. These systems must be 
made more valid if they are to enjoy widespread acceptance among 
physicians. 
The MENTOR system is designed to address the significant problem of 
adverse drug reactions by means of a computer-based monitoring and 
feedback system to influence physician decision-making. It employs 
principles of artificial intelligence to create a more valid system for 
evaluating therapeutic decision-making. 
The work in the MENTOR project is a collaboration between Dr. Blaschke at 
Stanford University, Dr. Speedie at the University of Maryland, and Dr. 
Charles Friedman at the University of North Carolina. Dr. Speedie provides 
the expertise in the area of artificial intelligence programming. Dr. Blaschke 
provides the medical expertise. Dr. Friedman contributes expertise in the 
area of physician feedback design and system impact evaluation. The blend 
of previous experience, medical knowledge, computer science knowledge and 
evaluation design expertise they represent is vital to the successful 
completion of the activities in the MENTOR project. 

C. Highlights of Research Progress 
The MENTOR project was initiated in December, 1983. The project has been 
funded by the National Center for Health Services Research since January 1, 
1985. Initial effort focused on exploration of the problem of designing the 
MENTOR system. As of June 1,1989, a working prototype system has been 
developed and is undergoing evaluation. The prototype consists of a Patient 
Data Base, an Inference Engine, an Advisory Module and a Medical 
Knowledge Base. The Medical Knowledge Base currently contains 
information related to aminoglycoside therapy, digoxin therapy, potassium 
supplementation, surgical prophylaxis, and microbiology lab reports. The 
system is currently implemented on a Xerox 1186 AI Workstation. Another 
version of the Patient Data Base has been developed for a VAXStation 3100 
that is connected via an asynchronous line to the 1186 running the inference 
engine. The project has received additional funding from the National Center 
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for Health Services Research to install and evaluate the MENTOR system in 
a Veterans Administration Hospital. This effort began in June of 1988 and 
will continue for two additional years. The VA system will reside on an 1186 
and a VAX Station II connected directly to the VA’s Ethernet LAN, and 
accessing hospital data through the FILEMAN software. 

E. Funding Support 
Title: MENTOR: Monitoring Drug Therapy for Hospitalized Patients 
Principal Investigators: 
Terrence F. Blascbke, M.D. 
Division of Clinical Pharmacology 
Department of Medicine 
Stanford University 
Stuart M. Speedie, Ph.D. 
School of Pharmacy 
University of Maryland 
Funding Agency: National Center for Health Services Research 
Grant Identification Number: 1 R18 HS05263 
Total Award: January 1,1985 - May 31,199O $1,091,750 Total 
Direct Costs: Current Period: June 1, 1989 - May 31,199O $289,961 (Total 
Direct Costs) 

II. INTERACTIONS WITH THE SUMEX-AIM RESOURCE 

k Medical Collaborations and Program Dissemination via SUMEX 
This project represents a collaboration between faculty at Stanford 
University Medical Center, the University of Maryland School of Pharmacy, 
and the University of North Carolina in exploring computer-based monitoring 
of drug therapy. SUMEX, through its communications capabilities, facilitates 
this collaboration of geographically separated project participants by 
providing electronic mail and file exchange between sites. 

B. Sharing and Interactions with Other SUMEX-AIM Projects 
Interactions with other SUMEX-AIM projects has been on an informal basis. 
Personal contacts have been made with individuals working on the 
ONCOCIN project concerning system development issues. Dr. Perry Miller 
has also been of assistance by providing software for advisory generation. 
Given the geographic separation of the investigators, the ability to exchange 
mail and programs via the SUMEX system as well as communicate with 
other SUMEX-AIM projects is vital to the success of the project. 

C. Critique of Resource Management 
To date, the resources of SUMEX have been fully adequate for the needs of 
this project. The staff have been most helpful with any problems we have 
had and we are quite satisfied with the current resource management. 
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III. RJ%EARCH PLANS 

k Project Goals and Plans 
The MENTOR project has the following goals: 

1) 

a 

3) 

Implement a prototype computer system to continuously monitor patient 
drug therapy in a hospital setting. This will be an expert system that will 
use a modular, frame-oriented form of medical knowledge, a separate 
inference engine for applying the knowledge to specific situations, and 
automated collection of data from hospital information systems to 
produce therapeutic advisories. 
Select a small number of important and frequently occurring medical 
settings (e.g., combination therapy with cardiac glycosides and diuretics) 
that can lead to therapeutic misadventures, construct a comprehensive 
medical knowledge base necessary to detect these situations using the 
information typically found in a computerized hospital information 
system and generate timely advisories intended to alter behavior and 
avoid preventable drug reactions. 
Design and begin to implement an evaluation of the impact of the 
prototype MENTOR system on physicians’ therapeutic decision-making 
as well as on outcome measures related to patient health and costs of 
care. 

1988 will be spent on continued prototype development in six content areas, 
refinement of the inference mechanisms, and installation of the system at the 
Palo Alto Veterans Administration Hospital. 

B. Justification and Requirements for Continued SUMEX Use 
This project needs continued use of the SUMEX facilities for one primary 
reason. Access to SUMEX is necessary to support the collaborative efforts of 
geographically separated development teams at Stanford and the University 
of Maryland. 
Furthermore, the MENTOR project is predicated on the access to the SUMEX 
resource free of charge over the next two years. Given the current 
restrictions on funding, the scope of the project would have to be greatly 
reduced if there were charges for use of SUMEX. 

C. Needs and Plans for Other Computing Resources Beyond SUMEX- 

A major long-range goal of the MENTOR project is to implement this system 
on a independent hardware system of suitable architecture. It is recognized 
that the full monitoring system will require a large patient data base as well 
as a sizeable medical knowledge base and must operate on a close to real-time 
basis. Ultimately, the SUMEX facilities will not be suitable for these 
applications. Thus, we have transported the prototype system to a dedicated 

E. H. Shortliffe 200 


